skip to main content


Search for: All records

Creators/Authors contains: "Yu, Qin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

     
    more » « less
  2. Abstract

    Satellite remote sensing data have indicated a general ‘greening’ trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities ofRangiferpopulations, and projected summer temperature changes by theNCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass andNPPresulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass andNPPby country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or denseRangiferherds such as the Nenets‐occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two.

     
    more » « less
  3. Abstract

    Mixed‐dimensional (0D, 1D, and 3D) heterostructures based on 2D layered materials have been proven as a promising candidate for future nanoelectronics and optoelectronics applications. In this work, it is demonstrated that 1D atomic chain based Se nanoplates (NPs) can be epitaxially grown on monolayer ReS2by a chemical transport reaction, thereby creating an interesting mixed‐dimensional Se/ReS2heterostructure. A unique epitaxial relationship is observed with the (110) planes of the Se NPs parallel to the corresponding ReS2(010) planes. Experimental and theoretical studies reveal that the Se NPs could conjugate with underlying monolayer ReS2via strong chemical hybridization at heterointerface, which is expected to originate from the intrinsic defects of ReS2. Remarkably, photodetectors based on Se/ReS2heterostructures exhibit ultrahigh detectivity of up to 8 × 1012Jones, and also show a fast response time of less than 10 ms. These results illustrate the great advantage of directly integrated 1D Se based nanostructure on planar semiconducting ReS2films for optoelectronic applications. It opens up a feasible way to obtain mixed‐dimensional heterostructures with atomic interfacial contact by epitaxial growth.

     
    more » « less